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Abstract. Our computational quality-of-service infrastructure is motivated by large-scale sci-
entific simulations based on partial differential equations, with emphasis on multimethod linear
solvers in the context of parallel computational fluid dynamics. We introduce a component in-
frastructure that supports performance monitoring, analysis, and adaptation of important numer-
ical kernels, such as nonlinear and linear system solvers. We define a simple, flexible interface
for the implementation of adaptive nonlinear and linear solver heuristics. We also provide com-
ponents for monitoring, checkpointing, and gathering of performance data, which are managed
through two types of databases. The first is created and destroyed during runtime and stores
performance data for code segments of interest, as well as various application-specific perfor-
mance events in the currently running application instance. The second database is persistent
and contains performance data from various applications and different instances of the same
application. This database can also contain performance information derived through offline
analysis of raw data. We describe a prototype implementation of this infrastructure and illus-
trate its applicability to adaptive linear solver heuristics used in a driven cavity flow simulation
code.

1. INTRODUCTION

Component-based environments provide opportunities to improve the performance, numer-
ical accuracy, and other characteristics of parallel simulations in CFD. Because component-
based software engineering combines object-oriented design with the powerful features of well-
defined interfaces, programming language interoperability, and dynamic composability, it helps
to overcome obstacles that hamper sharing even well-designed traditional numerical libraries.
Not only can applications be assembled from components selected to provide good algorithmic
performance and scalability, but they can also be changed dynamically during execution to opti-
mize desirable characteristics. We use the term computational quality of service (CQoS) [9,16]
to refer to the automatic selection and configuration of components for a particular computa-
tional purpose. CQoS embodies the familiar concept of quality of service in networking and
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the ability to specify and manage characteristics of the application in a way that adapts to the
changing (computational) environment. The factors affecting performance are closely tied to a
component’s parallel implementation, its management of memory, the algorithms executed, the
algorithmic parameters employed (e.g., the level of overlap in an additive Schwarz precondi-
tioner), and other operational characteristics. CQoS is also concerned with functional qualities,
such as the level of accuracy achieved for a particular algorithm.

This paper presents an overview of new software infrastructure for automated performance
gathering and analysis of high-performance components, a key facet of our CQoS research, with
emphasis on using these capabilities in parallel CFD simulations, such as flow in a driven cavity
and compressible Euler flow. The remainder of this paper is organized as follows. Section 2
discusses parallel CFD applications and algorithms that motivate this infrastructure. Section 3
introduces the new framework for enabling CQoS in parallel nonlinear PDE-based applica-
tions. Section 4 illustrates the performance of a simple adaptive algorithm strategy. Section 5
concludes with a summary and discussion of future work.

2. MOTIVATING APPLICATIONS AND ALGORITHMS

Flow in a Driven Cavity. The first parallel application that motivates and validates this
work is driven cavity flow, which combines lid-driven flow and buoyancy-driven flow in a two-
dimensional rectangular cavity. The lid moves with a steady and spatially uniform velocity and
thus sets a principal vortex and subsidiary corner vortices. The differentially heated lateral walls
of the cavity induce a buoyant vortex flow, opposing the principal lid-driven vortex. We use a
velocity-vorticity formulation of the Navier-Stokes and energy equations, which we discretize
using a standard finite-difference scheme with a five-point stencil for each component on a
uniform Cartesian mesh; see [7] for a detailed problem description.

Compressible Euler Flow. Another motivating application is PETSc-FUN3D [2], which
solves the compressible and incompressible Navier-Stokes equations in parallel; the sequen-
tial model was originally developed by W. K. Anderson [1]. The code uses a finite-volume
discretization with a variable-order Roe scheme on a tetrahedral, vertex-centered unstructured
mesh. The variant of the code under consideration here uses the compressible Euler equations
to model transonic flow over an ONERA M6 wing, a common test problem that exhibits the
development of a shock on the wing surface. Initially a first-order discretization is used; but
once the shock position has settled down, a second-order discretization is applied. This change
in discretization affects the nature of the resulting linear systems.

Newton-Krylov Algorithms. Both applications use inexact Newton methods (see, e.g., [14])
to solve nonlinear systems of the form f(u) = 0. We use parallel preconditioned Krylov meth-
ods to (approximately) solve the Newton correction equation f ′(u`−1) δu` = −f(u`−1), and
then update the iterate via u` = u`−1 + α · δu`, where α is a scalar determined by a line search
technique such that 0 < α ≤ 1. We terminate the Newton iterates when the relative reduction in
the residual norm falls below a specified tolerance. Our implementations use the Portable, Ex-
tensible Toolkit for Scientific computation (PETSc) [3], a suite of data structures and routines
for the scalable solution of scientific applications modeled by PDEs. PETSc integrates a hier-
archy of libraries that range from low-level distributed data structures for vectors and matrices
through high-level linear, nonlinear, and time-stepping solvers.

Pseudo-Transient Continuation. For problems with strong nonlinearities, Newton’s method
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often struggles unless some form of continuation is employed. Hence, we incorporate pseudo-
transient continuation [11], a globalization technique that solves a sequence of problems derived
from the model ∂u

∂t
= −f(u), namely,

g`(u) ≡ 1

τ `
(u− u`−1) + f(u) = 0, ` = 1, 2, . . . , (1)

where τ ` is a pseudo time step. At each iteration in time, we apply Newton’s method to Equa-
tion (1). As discussed by Kelley and Keyes [11], during the initial phase of pseudo-transient
algorithms, τ ` remains relatively small, and the Jacobians associated with Equation (1) are well
conditioned. During the second phase, the pseudo time step τ ` advances to moderate values,
and in the final phase τ ` transitions toward infinity, so that the iterate u` approaches the root of
f(u) = 0.

Adaptive Solvers. In both applications the linearized Newton systems become progressively
more difficult to solve as the simulation advances due to the use of pseudo-transient continua-
tion [11]. Consequently both are good candidates for the use of adaptive linear solvers [4,5,13],
where the goal is to improve overall performance by combining more robust (but more costly)
methods when needed in a particularly challenging phase of solution with faster (though less
powerful) methods in other phases. Parallel adaptive solvers are designed with the goal of reduc-
ing the overall execution time of the simulation by dynamically selecting the most appropriate
method to match the characteristics of the current linear system.

A key facet of developing adaptive methods is the ability to consistently collect and ac-
cess both runtime and historical performance data. Our preliminary research in adaptive meth-
ods [4, 5, 13], which employed ad hoc techniques to collect, store, and analyze data, has clearly
motivated the need for a framework to analyze performance and help to manage algorithmic
adaptivity.

3. COMPUTATIONAL QUALITY OF SERVICE FOR PARALLEL CFD

For a given parallel fluids problem, the availability of multiple solution methods, as well as
multiple configurations of the same method, presents both a challenge and an opportunity. On
the one hand, an algorithm can be chosen to better match the application’s requirements. On
the other hand, manually selecting a method in order to achieve good performance and reliable
results is often difficult or impossible. Component-based design enables us to automate, at least
partially, the task of selecting and configuring algorithms based on performance models, both
for purposes of initial application assembly and for runtime adaptivity.

The Common Component Architecture (CCA) specification [6] defines a component model
that specifically targets high-performance scientific applications, such as parallel CFD. Briefly,
CCA components are units of encapsulation that can be composed to form applications; ports
are the entry points to a component and represent public interfaces through which components
interact; provides ports are interfaces that a component implements, and uses ports are interfaces
through which a component invokes methods implemented by other components. A runtime
framework provides some standard services to all CCA components, including instantiation
of components and connection of uses and provides ports. At runtime, components can be
instantiated/destroyed and port connections made/broken, thereby allowing dynamic adaptivity
of CCA component applications and enabling the implementation of the adaptive linear solver
methods introduced above.
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In this paper, we present a CCA component infrastructure that allows researchers to monitor
and adapt a simulation dynamically based on two main criteria: the runtime information about
performance parameters and the information extracted from metadata from previous instances
(executions) of a component application. This infrastructure includes components for perfor-
mance information gathering, analysis, and interactions with off-line databases. Figure 1 (a)
shows a typical set of components involved in nonlinear PDE-based applications; no explicit
performance monitoring or adaptive method support is shown here. Figure 1 (b) shows the
same application with the new performance infrastructure components. This design makes de-
velopment of adaptive algorithms easier and less error-prone by separating as much as possible
unrelated concerns from the adaptive strategy itself. In contrast, because our initial adaptive
linear solver implementations were tightly interleaved and accessible only through a narrow
PETSc interface intended for simple user-defined monitoring functions, the software [5,13] be-
came difficult to understand and maintain (mixed code for multiple heuristics) and extend (e.g.,
when adding new adaptive heuristics). This situation motivated us to define a simple interface
that is flexible enough to enable the implementation of a wide range of adaptive heuristics, with
an initial focus on adaptive linear solvers. We have reproduced some of our original results us-
ing this new infrastructure, incurring only the expected minimal fixed overhead of component
interactions, for example as shown in [15].

We briefly introduce the terminology used in our CQoS infrastructure. We collectively refer
to performance-relevant attributes of a unit of computation, such as a component, as perfor-
mance metadata, or just metadata. These attributes include algorithm or application parame-
ters, such as problem size and physical constants; compiler optimization options; and execution
information, such as hardware and operating system information. Performance metrics, also
referred to as CQoS metrics, are part of the metadata, for example, execution time and conver-
gence history of iterative methods. Ideally, for each application execution, the metadata should
provide enough information to duplicate the run; in practice, not all parameters that affect the
performance are known or can be obtained, but the most significant ones are usually represented
in the metadata we consider. We collectively refer to such metadata as an application instance,
or experiment.

The design of our infrastructure is guided by the following goals: (1) low overhead dur-
ing the application’s execution: since all the time spent in performance monitoring and analy-
sis/adaptation is overhead, the impact on overall performance must be minimized; (2) minimal
code changes to existing application components in order to encourage use of this performance
infrastructure by as many CCA component developers as possible; and (3) ease of implemen-
tation of performance analysis algorithms and new adaptive strategies, to enable and encourage
the development and testing of new heuristics or algorithms for multimethod components.

Within our framework we differentiate between tasks that have to be completed during run-
time and tasks that are performed when the experiment is finished (because of stringent over-
head constraints during an application’s execution). Consequently, we have two databases that
serve significantly different purposes. The first is created and destroyed during runtime and
stores performance data for code segments of interest and application-specific performance
events for the running experiment. The second database is persistent and contains data about
various applications and experiments within one application. The second database also contains
metadata derived by performance analysis of raw performance results. At the conclusion of an
experiment, the persistent database is updated with the information from the runtime database.
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Figure 1. Some of the components and port connections in a typical PDE application: (a) in a
traditional nonadaptive setting, and (b) augmented with performance monitoring and adaptive
linear solver components.

Our initial implementation of this infrastructure relies on the Tuning and Analysis Utilities
(TAU) toolkit [8] and the Parallel Performance Data Management Framework (PerfDMF) [10].
We now briefly describe the principal components involved in collecting and managing perfor-
mance metadata and runtime adaptation.

The Adaptive Heuristic component implements a simple AdaptiveAlgorithm interface, whose
single method, adapt, takes an argument containing application-specific metadata needed to im-
plement a particular adaptive heuristic and to store the results. Specific implementations of the
AdaptiveContext interface contain performance metadata used by adaptive heuristics, as well as
references to the objects that provide the performance metadata contained in the context.

The TAU Measurement component collects runtime data from hardware counters, timing,
and user-defined application-specific events. This component was provided by the developers
of TAU; complete implementation details can be found in [12]. The Performance Monitor
component monitors the application, including the selection of algorithms and parameters based
on runtime performance data and stored metadata.

The Checkpoint component collects and stores metadata into a runtime database that can
be queried efficiently during execution for the purpose of runtime performance monitoring and
adaptation. When we started our implementation, the TAU profiling API could give only either
callpath-based or cumulative performance information about an instrumented object (from the
time execution started). Hence, we have introduced the Checkpoint component to enable us to
store and retrieve data for the instrumented object during the application’s execution (e.g., num-
ber of cache misses for every three calls of a particular function). The period for checkpointing
can be variable; the component can also be used by any other component in the application
to collect and query context-dependent and high-level performance information. For example,
a linear solver component can query the checkpointing component for performance metadata
of the nonlinear solver (the linear solver itself has no direct access to the nonlinear solver that
invoked it). We can therefore always get the latest performance data for the given instrumented
object from the database constructed during runtime.

The Metadata Extractor component retrieves metadata from the database at runtime. After
running several experiments, analyzing the performance data, and finding a common perfor-
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Figure 2. Components for offline query, management, and analysis of CQoS metadata.

mance behavior with some parameter values, we store data summarizing this behavior in the
database. An example of derived metadata is the rate of convergence of a nonlinear or a linear
solver. During runtime, these data are used in adapting our parameter and algorithm selec-
tion, and the Metadata Extractor component can retrieve compact metadata from the database
efficiently.

Offline Analysis Support. The portions of the infrastructure that are not used at runtime are
illustrated in Figure 2. They include a performance data extractor for retrieving data from the
performance database, which is used by the offline analysis algorithm components. At present,
the extractor also produces output in Matlab-like format, which is convenient for plotting some
performance results; this output can be enhanced to interface with tools that provide more ad-
vanced visualization capabilities, such as an extension of ParaProf (part of the TAU suite of
tools).

Many analyses can be applied offline to extract performance characteristics from the raw ex-
ecution data or the results of previous analyses—in fact, facilitating the development of such
analyses was one of our main motivations for developing this performance infrastructure. Ini-
tially we are focusing on simple analyses that allow us to replicate results in constructing adap-
tive, polyalgorithmic linear solvers from performance statistics of base linear solver experi-
ments [4,5,13]. For the longer term, we plan to use this infrastructure for rapid development of
new performance analyses and adaptive heuristics.

4. APPLICATION EXAMPLE

We illustrate the use of our performance infrastructure in the parallel driven cavity application
briefly described in Section 2. As mentioned earlier, the use of pseudo-transient continuation
affects the conditioning of the linearized Newton systems; thus, the resulting linear systems are
initially well-conditioned and easy to solve, while later in the simulation they become progres-
sively harder to solve.

In this parallel application, metadata describing the performance of the nonlinear solution, as
well as each linear solution method, can be used to determine when to change or reconfigure
linear solvers [5, 13]. Figure 3 shows some performance results comparing the use of a simple
adaptive heuristic with the traditional single solution method approach. Even this simple au-
tomated adaptive strategy performs better than most base methods, and almost as well as the
best base method (whose performance, of course, is not known a priori). Recent work on more
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Figure 3. Comparison of single-method linear solvers and an adaptive scheme. We plot the
nonlinear convergence rate (in terms of residual norm) versus both time step (left-hand graph)
and cumulative execution time (right-hand graph).

sophisticated adaptive heuristics has achieved parallel performance that is consistently better
than any single solution method [4].

Another use of our performance infrastructure is selection of application parameters based
on performance information with the goal of maximizing performance. For example, in the
application considered here, the initial CFL value is essential for determining the time step
for the pseudo-transient Newton solver, which in turn affects the overall rate of convergence
of the problem. One can query the database to determine the best initial CFL value from the
experimental data available. Similarly, the values of other parameters that affect performance
can be determined based on past performance data and offline analysis.

5. CONCLUSIONS AND FUTURE WORK

This work has introduced new infrastructure for performance analysis and adaptivity of par-
allel PDE-based applications, with a focus on computational fluids dynamic simulations. We
are currently completing the migration of our existing adaptive heuristics to the new component
infrastructure. New heuristics for adaptive method selection will also be investigated, including
components for offline analyses of performance information. In addition to runtime adaptation,
our performance infrastructure can potentially support initial application assembly and is being
integrated with existing CCA component infrastructure that uses component performance mod-
els for automated application assembly. The accuracy of such models can be enhanced by using
historical performance data to select the best initial set of components.

While our current adaptive linear solver implementations are based on PETSc solvers, the
component infrastructure is not limited to one particular library. We plan to experiment with
adaptive algorithms based on other libraries as well as to evaluate their effectiveness on new
applications. Another topic of future research concerns defining and using CQoS metrics that
reflect differences in algorithmic scalability in large-scale parallel environments. Such metrics
would rely at least partly on performance models of the scalability of various algorithms.
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